<< quadratic quadratical >>

quadratic equation Meaning in Hindi (शब्द के हिंदी अर्थ)


quadratic equation ka kya matlab hota hai


Noun:

वर्ग समीकरण, द्विघात समीकरण,



quadratic equation शब्द के हिंदी अर्थ का उदाहरण:



(३) बीजगणित: द्विघात समीकरण (शुल्बसूत्र, आर्यभट, और ब्रह्मगुप्त देखें), त्रिघात समीकरण और चतुर्घात समीकरण (biquadratic equations) (महावीर और भास्कर द्वितीय देखें)।

विज्ञान, तकनीकी एवं अन्य अनेक स्थितियों में किसी समस्या के समाधान के समय वर्ग समीकरण से अक्सर सामना पडता रहता है।

यदि द्विघात समीकरण किसी रेखा-युग्म को निरूपित करता है तो उस द्विघात समीकरण को (x+ay+b)*(x+cy+d)० रूप में भी परिवर्तित किया जा सकता है ; जहाँ a, b, c, d सभी वास्तविक संख्यायें (real numbers) हैं।

ब्रह्मगुप्त ने ब्रह्मस्फुटसिद्धान्त में वर्ग समीकरण के हल का निम्नलिखित सूत्र दिया है-।

किसी वर्ग समीकरण के दो मूल होते हैं (किन्तु आवश्यक नहीं कि दोनो भिन्न (distinct) हों) ; अर्थात चर राशि के दो मानों के लिये दिया गया वर्ग समीकरण संतुष्ट हो सकता है।

को द्विघात समीकरण का विविक्तकर (Discriminant) कहते हैं।

वर्ग समीकरण के 101 उपयोग : भाग - १ व भाग - २।

सितार वादक गणित मे द्विघात समीकरण द्वितीय घात का एक बहुपद समीकरण होता है जिसका मानक समीकरण।

वर्ग समीकरण के हल भिन्न-भिन्न तरीकों से प्राचीन काल से ही निकाले जाते रहे हैं।

वर्ग समीकरण का सामान्य समीकरण(General Equation) इस प्रकार का होता है:।

गणितीय श्रेणी गणित में दो घात वाले समीकरण को वर्ग समीकरण (quadratic equation) या द्विघात समीकरण कहते हैं।

यूक्लिड ने वर्ग समीकरण के हल की ज्यामितीय पद्धति बतायी थी।

वर्ग समीकरण को निम्नलिखित रूप में भी लिख सकते हैं-।

* द्विघात समीकरण (Quadratic equation)।

इन्होंने एक घातीय अनिर्धार्य समीकरण का पूर्णाकों में व्यापक हल दिया, जो आधुनिक पुस्तकों में इसी रूप में पाया जाता है और अनिर्धार्य वर्ग समीकरण, K y2 + 1 x2, को भी हल करने का प्रयत्न किया।

इसमे सतत भिन्न (कँटीन्यूड फ़्रेक्शन्स), द्विघात समीकरण (क्वाड्रेटिक इक्वेशंस), घात श्रृंखला के योग (सम्स ऑफ पावर सीरीज़) और ज्याओं की एक तालिका (Table of Sines) शामिल हैं।

किसी द्विघात समीकरण के दो (अलग होना आवश्यक नही) हल होते हैं जिन्हे द्विघात समीकरण के मूल या हल कह्ते हैं जिन्हे समी-।

मगर हमें मालूम है कि आज के 4000 वर्ष पहले बेबीलोन तथा मिस्र सभ्यताएं गणित का इस्तेमाल पंचांग (कैलेंडर) बनाने के लिए किया करती थीं जिससे उन्हें पूर्व जानकारी रहती थी कि कब फसल की बुआई की जानी चाहिए या कब नील नदी में बाढ़ आएगी, या फिर इसका प्रयोग वे वर्ग समीकरणों को हल करने के लिए किया करती थीं।

कार्तीय निर्देशांकों में, सभी शंकु परिच्छेदों को x और y में एक द्विघात समीकरण द्वारा व्यक्त किया जा सकता है।

भारत में आर्यभट्ट ने ४७६ ई. में द्विघात समीकरण का हल मौलिक रूप से दिया।

कार्तीय निर्देशांक में इन दो रेखाओं को सम्मिलित रूप से निरूपित करने वाला समीकरण X एवं Y में एक द्विघात समीकरण होता है।

एकघात और द्विघात समीकरणों का हल डायफेंटस ने लगभग २५० ई. में दिया था (देखें डायेफैंटीय समीकरण)।

इसलिये वर्ग समीकरण का हल बहुत महत्व रखता है।

बीजगणित में समीकरण साधनों के नियमों का उल्लेख किया तथा अनिर्धार्य द्विघात समीकरण (Indeterminate quadratic equations) का समाधान भी बताया, जिसे आयलर (Euler) ने 1764 ई. में और लांग्रेज ने 1768 ई. में प्रतिपादित किया।

द्विघात समीकरण के मूल ।

भारतीय गणित के इतिहास में द्विघात समीकरण

किसी वर्ग समीकरण के गुणांक वास्तविक संख्या या समिश्र संख्या हो सकते हैं।

Synonyms:

quadratic, equation,



Antonyms:

comfort, danger, stigmatism, innocence, purity,



quadratic equation's Meaning in Other Sites