<< quadratics quadratrix >>

quadrating Meaning in Hindi (शब्द के हिंदी अर्थ)


quadrating ka kya matlab hota hai


द्विघात


quadrating शब्द के हिंदी अर्थ का उदाहरण:

एकघात और द्विघात समीकरणों का हल डायफेंटस ने लगभग २५० ई. में दिया था (देखें डायेफैंटीय समीकरण)।

इसमे सतत भिन्न (कँटीन्यूड फ़्रेक्शन्स), द्विघात समीकरण (क्वाड्रेटिक इक्वेशंस), घात श्रृंखला के योग (सम्स ऑफ पावर सीरीज़) और ज्याओं की एक तालिका (Table of Sines) शामिल हैं।

श्रीधराचार्य (सन् 850) ने द्विघाती समीकरणों के हल की विधि दी जो आज 'श्रीधराचार्य विधि' के नाम से ज्ञात है।

यदि द्विघात समीकरण किसी रेखा-युग्म को निरूपित करता है तो उस द्विघात समीकरण को (x+ay+b)*(x+cy+d)० रूप में भी परिवर्तित किया जा सकता है ; जहाँ a, b, c, d सभी वास्तविक संख्यायें (real numbers) हैं।

(५) १६वीं शताब्दी में द्विघात और त्रिघात समीकरणों के साधन हेतु सिद्धान्त का प्रतिपादन;।

बीजगणित में समीकरण साधनों के नियमों का उल्लेख किया तथा अनिर्धार्य द्विघात समीकरण (Indeterminate quadratic equations) का समाधान भी बताया, जिसे आयलर (Euler) ने 1764 ई. में और लांग्रेज ने 1768 ई. में प्रतिपादित किया।

জজজ

ब्रह्मगुप्त ने द्विघातीय अनिर्धार्य समीकरणों (Nx2 + 1 y2) के हल की विधि भी खोज निकाली।

कार्तीय निर्देशांक में इन दो रेखाओं को सम्मिलित रूप से निरूपित करने वाला समीकरण X एवं Y में एक द्विघात समीकरण होता है।

कार्तीय निर्देशांकों में, सभी शंकु परिच्छेदों को x और y में एक द्विघात समीकरण द्वारा व्यक्त किया जा सकता है।

(२) गणितपाद (३३ छंद) में क्षेत्रमिति (क्षेत्र व्यवहार), गणित और ज्यामितिक प्रगति, शंकु/ छायाएँ (शंकु -छाया), सरल, द्विघात, युगपत और अनिश्चित समीकरण (कुट्टक) का समावेश है।

बीजगणित के समीकरणों के हल की विधि एवं द्विघातीय कुट्टक समीकरण, X2 N.y2 + 1 का हल इसमें दिया गया है।

(३) बीजगणित: द्विघात समीकरण (शुल्बसूत्र, आर्यभट, और ब्रह्मगुप्त देखें), त्रिघात समीकरण और चतुर्घात समीकरण (biquadratic equations) (महावीर और भास्कर द्वितीय देखें)।

भारत में आर्यभट्ट ने ४७६ ई. में द्विघात समीकरण का हल मौलिक रूप से दिया।

quadrating's Meaning in Other Sites