confocal Meaning in Hindi (शब्द के हिंदी अर्थ)
confocal ka kya matlab hota hai
कॉन्फोकल
Adjective:
गावदुम के रूप का, गावदुम, चोटीदार,
People Also Search:
conformconform to
conformable
conformably
conformal
conformance
conformation
conformational
conformations
conformed
conformer
conforming
conformism
conformist
conformists
confocal शब्द के हिंदी अर्थ का उदाहरण:
साधारणत: इस जीव का पृष्ठीय भाग गहरा धूसर, जैतूनहरित या भूरे से लेकर ईटं के रंग तक का और उदरदेशीय भाग हल्के रंग का तथा अग्र और पश्च भाग गावदुम (Tapering) होता है।
इन स्तंभों के दो मुख्य भाग उल्लेखनीय हैं—(1) स्तंभ यष्टि या गावदुम लाट (tapering shaft) और शीर्ष भाग।
विपरीत, petiolate, बहुत चर, रैखिक मोटे तौर पर चाकू का तीव्र या ovate, पूरे, चिकनी, चमक रहा है, गहरे हरे रंग की, बाद में ऊपर सफेद के साथ विचित्र पत्तियां. कोरोला ट्यूबलर; विपरीत axils, छोटे, हरे रंग के बाहर, भीतर बैंगनी में racemes या cymes में फूल. दो रोम, लंबा, पतला, फलों गावदुम के रूप का प्रसार. चांदी सफेद कोमा के साथ बीज. Fl: लगभग साल भर.।
विपरीत, petiolate, बहुत चर, रैखिक मोटे तौर पर चाकू का तीव्र या ovate, पूरे, चिकनी, चमक रहा है, गहरे हरे रंग की, बाद में ऊपर सफेद के साथ विचित्र पत्तियां. कोरोला ट्यूबलर; विपरीत axils, छोटे, हरे रंग के बाहर, भीतर बैंगनी में racemes या cymes में फूल. दो रोम, लंबा, पतला, फलों गावदुम के रूप का प्रसार. चांदी सफेद कोमा के साथ बीज. Fl: लगभग साल भर.।
नीली व्हेल का एक लंबा गावदुम शरीर जो अन्य व्हेल की तुलना में काफी फैला हुआ होता है।
डाई प्लेट में गावदुम आकार के छेद बने होते हैं।
जब केंद्रीय अक्ष बिना विभक्त गावदुम रूप में गहरा भूमिगत होता है, तब उससे मूसला जड़ (tap root) बनती है।
confocal's Usage Examples:
The potential of such a shell at any internal point is constant, and the equi-potential surfaces for external space are ellipsoids confocal with the ellipsoidal shell.
The extension to the case where the liquid is bounded externally by a fixed ellipsoid X= X is made in a similar manner, by putting 4 = x y (x+ 11), (io) and the ratio of the effective angular inertia in (9) is changed to 2 (B0-A0) (B 1A1) +.a12 - a 2 +b 2 a b1c1 a -b -b12 abc (Bo-Ao)+(B1-A1) a 2 + b 2 a1 2 + b1 2 alblcl Make c= CO for confocal elliptic cylinders; and then _, 2 A? ?
When the liquid is bounded externally by the fixed ellipsoid A = A I, a slight extension will give the velocity function 4 of the liquid in the interspace as the ellipsoid A=o is passing with velocity U through the confocal position; 4 must now take the formx(1'+N), and will satisfy the conditions in the shape CM abcdX ¢ = Ux - Ux a b x 2+X)P Bo+CoB I - C 1 (A 1 abcdX, I a1b1cl - J o (a2+ A)P and any'confocal ellipsoid defined by A, internal or external to A=A 1, may be supposed to swim with the liquid for an instant, without distortion or rotation, with velocity along Ox BA+CA-B 1 -C1 W'.
A system of confocal ellipsoids is taken y2 (3) a 2 +X b 2 +X c2 + A= I, and a velocity function of the form = x1 P, (4) where 4' is a function of X only, so that 4) is constant over an ellipsoid; and we seek to determine the motion set up, and the form of >G which will satisfy the equation of continuity.
In a similar way the more general state of motion may be analysed, given by w =r ch2('-y), y =a+, i, (26) as giving a homogeneous strain velocity to the confocal system; to which may be added a circulation, represented by an additional term in w.
- Employ the elliptic coordinates n,, and -=n+Vi, such that z=cch?, cchncos,y=cshnsin-; (1) then the curves for which n and are constant are confocal ellipses and hyperbolas, and -d(n,) =c 2 (ch 2 n - cost) = 2c 2 (ch2n-cos2) = r i r 2 = OD 2, (2) if OD is the semi-diameter conjugate to OP, and ri, r 2 the focal distances, rl,r2 = c (ch n cos 0; r 2 = x2 +y2 = c 2 (ch 2 n - sin20 = 1c 2 (ch 2 7 7 +cos 2?).
- Confocal Elliptic Cylinders.
The varying direction of the inclining couple Pc may be realized by swinging the weight P from a crane on the ship, in a circle of radius c. But if the weight P was lowered on the ship from a crane on shore, the vessel would sink bodily a distance P/wA if P was deposited over F; but deposited anywhere else, say over Q on the water-line area, the ship would turn about a line the antipolar of Q with respect to the confocal ellipse, parallel to FF', at a distance FK from F FK= (k2-hV/A)/FQ sin QFF' (2) through an angle 0 or a slope of one in m, given by P sin B= m wA FK - W'Ak 2V hV FQ sin QFF', (3) where k denotes the radius of gyration about FF' of the water-line area.
of the fluid, equal to the weight vertically upward through the movement of a weight P through a distance c will cause the ship to heel through an angle 0 about an axis FF' through F, which is conjugate to the direction of the movement of P with respect to an ellipse, not the momental ellipse of the water-line area A, but a confocal to it, of squared semi-axes a 2 -hV/A, b 2 - hV/A, (I) h denoting the vertical height BG between C.G.
Legendre, in 1783, extended Maclaurin's theorem concerning ellipsoids of revolution to the case of any spheroid of revolution where the attracted point, instead of being limited to the axis or equator, occupied any position in space; and Laplace, in his treatise Theorie du mouvement et de la figure elliptique des planetes (published in 1784), effected a still further generalization by proving, what had been suspected by Legendre, that the theorem was equally true for any confocal ellipsoids.