बीजाक्षर Meaning in English
बीजाक्षर शब्द का अंग्रेजी अर्थ : algebraic
, the first letter of an incantation
ऐसे ही कुछ और शब्द
चैत्रब्राह्मण
किताब की जिल्द का पहला पन्ना
कवच प्राणियों का मांस
चतुर्वेद
कलियुग
घ
नाटकों का ताज़दे
पूर्णमासी
यद्ध के कार्य
घर्रा
सावित्री
जिव्हा पर सरस्वती का वास
लड़की
दुर्गा
बीजाक्षर हिंदी उपयोग और उदाहरण
"" चित्त एकाग्र करने के लिए पहले पूरे ओ३म का उच्चारण न कर उसके बीजाक्षर अ का ही जप किया जाता है।
वाल्मीकि जी ने गायत्री मंत्र के २४ बीजाक्षरों को इन श्लोकों में पाणित्यपूर्ण ढंग से जड़ दिया है।
वास्तव में कामाक्षी में मात्र कमनीयता ही नहीं, वरन कुछ बीजाक्षरों का यांत्रिक महत्व भी है।
कैलाशाचल कन्दरालयकरी गौरी उमा शंकरी, कौमारी निगमार्थ-गोचरकरी ओंकार बीजाक्षरी |।
(१००० श्लोकों पर एक बीजाक्षर) इन २४ बीजाक्षरों से आरम्भ होने वाले श्लोकों के समूह को 'गायत्री रामायण' कहते हैं।
कविता संग्रह : गलत पते की चिट्ठी, बीजाक्षर, अनुष्टुप, समय के शहर में, खुरदुरी हथेलियाँ, दूब धान .।
बीजाक्षर इसके अंग्रेजी अर्थ का उदाहरण
This generating function is essentially an algebraic form of the Artin–Mazur zeta function, which gives geometric information about the fixed and periodic points of f.
Set-theoretic, algebraic and topological operations on multivalued maps (like union, composition, sum, convex hull, closure).
Hack and slash games In mathematics, stable homotopy theory is that part of [theory] (and thus algebraic topology) concerned with all structure and phenomena that remain after sufficiently many applications of the suspension functor.
The more mathematical approach uses an index-free notation, emphasizing the geometric and algebraic structure of the gauge theory and its relationship to Lie algebras and Riemannian manifolds; for example, treating gauge covariance as equivariance on fibers of a fiber bundle.
Taxa named by Carl Linnaeus In number theory and algebraic geometry, a rational point of an algebraic variety is a point whose coordinates belong to a given field.
Given a field k, and an algebraically closed extension K of k, an affine variety X over k is the set of common zeros in K^n of a collection of polynomials with coefficients in k:.
When X is a variety over an algebraically closed field k, much of the structure of X is determined by its set X(k) of k-rational points.
On the other hand, in the terminology of algebraic geometry, the algebraic variety X over R is not empty, because the set of complex points Xis not empty.
Much of number theory can be viewed as the study of rational points of algebraic varieties, a convenient setting being smooth projective varieties.
In this case, X has the structure of a commutative algebraic group (with p0 as the zero element), and so the set X(k) of k-rational points is an abelian group.
Taxa named by Carl Linnaeus In algebraic geometry, a Weil cohomology or Weil cohomology theory is a cohomology satisfying certain axioms concerning the interplay of algebraic cycles and cohomology groups.
For each smooth projective algebraic variety X of dimension n over k, then the graded K-algebra.
For each integer r, there is a cycle map defined on the group Z^r(X) of algebraic cycles of codimension r on X,.