incomparability Meaning in Odia (Oriya). ( incomparability ଶବ୍ଦର ଓଡିଆ ଅର୍ଥ)
ଅସଙ୍ଗତି,
Noun:
ଅସଙ୍ଗତି |,
People Also Search:
incomparableincomparably
incompatibilities
incompatibility
incompatible
incompatibles
incompatibly
incompetence
incompetency
incompetent
incompetent cervix
incompetent person
incompetently
incompetents
incomplete
incomparability తెలుగు అర్థానికి ఉదాహరణ:
|ଆଧୁନିକ ଜ୍ୟାମିତି|ଇଉକ୍ଲିଡଙ୍କଦ୍ୱାରା ପ୍ରଣିତ ଜ୍ୟାମିତିରେ କେତେକ ତାର୍କିକ ଅସଙ୍ଗତି ରହିଥିବା କଥା ବିଖ୍ୟାତ ଦାର୍ଶନିକ ଓ ଗଣିତଜ୍ଞ ବର୍ଟ୍ରାଣ୍ଡ ରସେଲ (Bertrand Russell) ତାଙ୍କର Mathematics and Metaphysics ପ୍ରବନ୍ଧରେ ଦର୍ଶାଇ ଦେବାପରେ ଜ୍ୟାମିତିକୁ ତ୍ରୁଟିମୁକ୍ତ କରି ଏକ ବଳିଷ୍ଠ ତର୍କସମ୍ମତ ଭିତ୍ତିଭୂମିରେ ପ୍ରତିଷ୍ଠିତ କରିବାର ପ୍ରଚେଷ୍ଟା କରାଗଲା ।
୨୦୧୭ ମସିହାରେ ଏହା କାଢ଼ି ନ ହେଉଥିବା ଓ ଜେନେଟିକ ଅସଙ୍ଗତି ଥିବା ତଥା ମେଟାସ୍ଟାସିସ ହୋଇଥିବା କଠିନ ଅର୍ବୁଦର ଚିକିତ୍ସା ପାଇଁ ଅନୁମୋଦିତ ହୋଇଥିଲା ।
ଯଦି ଏହି ଛୋଟ ଅସଙ୍ଗତି ବାରମ୍ବାର ପ୍ରତ୍ୟେକ ଦିନ ଏକ ବର୍ଷକ ପାଇଁ ହୁଏ,ଏହା ବର୍ଷ ଶେଷକୁ ଏକ ସେକେଣ୍ଡ ଭାବେ ଯୋଡ଼ା ହେବ ।
incomparability's Usage Examples:
The incomparability graph of a partially ordered set P ( X , < ) {\displaystyle P(X.
view, apparent incomparability is merely ignorance.
realizer"s orders would have ai preceding bi, which would contradict the incomparability of ai and bi in P.
has a w-colorable incomparability graph.
since m < s 2 {\displaystyle m
Similarly, the incomparability relation on P {\displaystyle P} induced by R {\displaystyle R} is defined.
Isaiah 42:18), to declare the incomparability of YHWH.
might be seen as a promise ("I will be with you") or as statement of incomparability ("I am without equal").
God demonstrates that he is directing events; and in the third, the incomparability of Yahweh is displayed.
< and transitivity of incomparability with respect to < together imply the above axiom 2, while transitivity of incomparability alone implies axiom 3.
The extension A ⊆ B is said to satisfy the incomparability property if whenever q {\displaystyle {\mathfrak {q}}} and q ′ {\displaystyle.
Therefore, by the De Bruijn–Erdős theorem, P itself also has a w-colorable incomparability graph, and thus has.
Going-up and going-down theoremsThe usual statements of going-up and going-down theorems refer to a ring extension A"nbsp;⊆"nbsp;B:(Going up) If B is an integral extension of A, then the extension satisfies the going-up property (and hence the lying over property), and the incomparability property.