<< polyhedric polyhedrons >>

polyhedron Meaning in Hindi (शब्द के हिंदी अर्थ)


polyhedron ka kya matlab hota hai


पॉलीहेड्रन

Noun:

बहुफलक, अनेकतल, बहुतल,



polyhedron शब्द के हिंदी अर्थ का उदाहरण:

बहुफलकी (Polyhedron)।

यह बहुफलक है जिसके प्रत्येक शीर्ष पर छहवर्ग रहते हैं।

इस दशा में षड्भुज एक ऐसे समस्पंज अर्थात्‌ कुटिल (तिरछे skew) बहुफलक के फलक हो जाते हैं जिसके प्रत्येक शीर्ष पर चार षड्भुज है।

बहुफलक के समान क्रिस्टल में भी फलक संख्या और कोनिया की संख्या का जोड़ कोर की संख्या और दो के जोड़ के बराबर हो जाता है।

बहुफलक की सूची एवं डेटाबेस ।

জজজ

इन तीनों कुटिल बहुफलकों के पाँच प्लेटोनीय ठोसों की भाँति फलक समभुज और कोण समान होते हैं।

पोप और बालों (1906 ई.) के विचार में ये बहुफलकीय इकाइयाँ प्रत्यास्थ (elastic), पर असंपीड्य (incompressible) और विरूपणीय (deformable) गोलों के संघनित समुच्चय से व्युत्पन्न हैं।

यह बहुफलक ऐसे घनवलयों से बन सकता है जिनमें दो सम्मुख फलक न हों।

इतिहास, कलन का बहुफलक ज्यामिति में, एक पॉलीहेड्रॉन (बहुवचन पॉलीहेड्रा या पॉलीहेड्रॉन) समतल बहुभुज चेहरे, सीधे किनारों और तेज कोनों या कोने के साथ तीन आयामों में एक ठोस होता है।

सरल शब्दों में आयलर सूत्र सभी बहुफलकों पर परिभाषित है (ie. a 3 dimensional figure that has face,vertex ' edge present in them like cube,cuboid etc.) मुख्य सूत्र निम्न है : फलक + शीर्ष कोर + 2।

इसी प्रकार तिर्यकछिन्न चतुष्फलकों से जो कुटिल बहुफलक बनता है उसके प्रत्येक शीर्ष पर छह षड्भुज रहते है इन दो के अतिरिक्त एक और प्रकार का कुटिल बहुफलक है जिसके प्रत्येक शीर्ष पर छह वर्ग रहते हैं।

इस बहुफलक की घरी हो सकती है।

polyhedron's Usage Examples:

The correspondence of the faces of polyhedra is also of importance, as may be seen from the manner in which one polyhedron may be derived from another.


If the figure be entirely to one side of any face the polyhedron is said to be " convex, " and it is obvious that the faces enwrap the centre once; if, on the other hand, the figure is to both sides of every face it is said to be concave, " and the centre is multiply enwrapped by the faces.


take the pole of each face of such a polyhedron with respect to a paraboloid of revolution, these poles will be the vertices of a second polyhedron whose edges are the conjugate lines of those of the former.


A polyhedron is said to be the hemihedral form of another polyhedron when its faces correspond to the alternate faces of the latter or holohedral form; consequently a hemihedral form has half the number of faces of the holohedral form.


POLYHEDRON (Gr.


The mensuration of the cube, and its relations to other geometrical solids are treated in the article Polyhedron; in the same article are treated the Archimedean solids, the truncated and snubcube; reference should be made to the article Crystallography for its significance as a crystal form.


A polyhedron (A) is said to be the summital or facial holohedron of another (B) when the faces or vertices of A correspond to the edges of B, and the vertices or faces of A correspond to the vertices and faces together of B.


If we take any polyhedron with plane faces, the null-planes of its vertices with respect to a given wrench will form another polyhedron, and the edges of the latter will be conjugate (in the above sense) to those of the former.


The points thus obtained are evidently the vertices of a polyhedron with plane faces.


More briefly, the figure may be defined as a polyhedron with two parallel faces containing all the vertices.



Synonyms:

concave polyhedron, dodecahedron, tetrahedron, prismatoid, regular polyhedron, octahedron, ideal solid, pyramid, hexahedron, Platonic solid, pentahedron, prism, decahedron, solid, convex polyhedron, regular convex polyhedron, Platonic body, regular convex solid, icosahedron, trapezohedron,



Antonyms:

heterogeneous, unwholesome, soft, liquid, gaseous,



polyhedron's Meaning in Other Sites