conics Meaning in Hindi (शब्द के हिंदी अर्थ)
conics ka kya matlab hota hai
कोनिक्स
Adjective:
शंकुधर, चोटीदार, गावदुम,
People Also Search:
conidiaconidial
conidiophore
conidiophores
conidiospore
conidiospores
conidium
conies
conifer
coniferous
coniferous tree
conifers
coniform
coniine
conima
conics शब्द के हिंदी अर्थ का उदाहरण:
मिश्रित-शंकुधर वन एबीस स्पेक्टाबिलिस, पीनस वॉलिचिआना (Pinus wallichiana) और पीसीया स्मिथिआना (Picea smithiana) से मिलकर बनते हैं।
पश्चिम हिमालयी उपअल्पाइन शंकुधर वन ।
यह जैवक्षेत्र पूर्वी हिमालयी उपअल्पाइन शंकुधर वनों से जो गण्डकी नदी से पूर्व में है, अधिक सूखा है।
शंकुधर वनों का यह जैवक्षेत्र ३,००० से ५,००० मीटर की ऊँचाई पर ३९,७०० वर्ग किलोमीटर में फैले हुए हैं।
समशीतोष्ण शंकुधारी वन, पश्चिम हिमालयी उपअल्पाइन शंकुधर वन, वृक्षरेखा से कुछ नीचे उगते हैं।
भारत के राष्ट्रीय राजमार्ग (पुराने संख्यांक) हिमालयी उपोष्णकटिबन्धीय पाइन वन एक प्रकार के विशाल उपोष्णकटिबन्धीय शंकुधर वनों का जैवक्षेत्र है जो भूटान, भारत, नेपाल और पाकिस्तान के हिमालयी क्षेत्रों में ७६,२०० वर्ग किमी क्षेत्रफल में फैले हुए हैं।
यह शैली आगे चल कर कई रूप में लिखी जाने लगी जैसे, पुश्पीय, नक़ूशी, चोटीदार, बोर्डर रूप, और चतुरस्रीय रूप की शैली इत्यादी।
गूगल परियोजना पश्चिम हिमालयी उपअल्पाइन शंकुधर वन एक प्रकार के समशीतोष्ण शंकुधर वन है जो नेपाल, भारत और पाकिस्तान के पश्चिमी हिमालय के जैवक्षेत्र में पाए जाते हैं।
जिनमें से 70% सलवटी चोटीदार मैदानों से व 10% चिकनी या लोदार मैदानों से बना है।
यह जैवक्षेत्र पूर्वी हिमालयी उपअल्पाइन शंकुधर वनों से जो गण्डकी नदी से पूर्व में है, अधिक सूखा है।
पौधों में कंगुताल (साइकेड्स Cycads), शंकुधर (कोनिफर्स Conifers) और पर्णांग (फर्न fern) अधिक थे।
conics's Usage Examples:
(this is the monumental edition of Edmund Halley); (3) the edition of the first four books of the Conics given in 1675 by Barrow; (4) Apollonii Pergaei de Sectione Rationis libri duo: Accedunt ejusdem de Sectione Spatii libri duo Restituti: Praemittitur, e g c., Opera et Studio Edmundi Halley (Oxoniae, 1706), 4to; (5) a German translation of the Conics by H.
Each of these was divided into two books, and, with the Data, the Porisms and Surface-Loci of Euclid and the Conics of Apollonius were, according to Pappus, included in the body of the ancient analysis.
The generality of treatment is indeed remarkable; he gives as the fundamental property of all the conics the equivalent of the Cartesian equation referred to oblique axes (consisting of a diameter and the tangent at its extremity) obtained by cutting an oblique circular cone in any manner, and the axes appear only as a particular case after he has shown that the property of the conic can be expressed in the same form with reference to any new diameter and the tangent at its extremity.
The degree of originality of the Conics can best be judged from Apollonius' own prefaces.
After the Conics in eight Books had been written in a first edition, Apollonius brought out a second edition, considerably revised as regards Books i.-ii., at the instance of one Eudemus of Pergamum; the first three books were sent to Eudemus at intervals, as revised, and the later books were dedicated (after Eudemus' death) to King Attalus I.
His treatise on Conics gained him the title of The Great Geometer, and is that by which his fame has been transmitted to modern times.
Astronomy was also enriched by his investigations, and he was led to several remarkable theorems on conics which bear his name.
Under the general heading "Geometry" occur the subheadings "Foundations," with the topics principles of geometry, non-Euclidean geometries, hyperspace, methods of analytical geometry; "Elementary Geometry," with the topics planimetry, stereometry, trigonometry, descriptive geometry; "Geometry of Conics and Quadrics," with the implied topics; "Algebraic Curves and Surfaces of Degree higher than the Second," with the implied topics; "Transformations and General Methods for Algebraic Configurations," with the topics collineation, duality, transformations, correspondence, groups of points on algebraic curves and surfaces, genus of curves and surfaces, enumerative geometry, connexes, complexes, congruences, higher elements in space, algebraic configurations in hyperspace; "Infinitesimal Geometry: applications of Differential and Integral Calculus to Geometry," with the topics kinematic geometry, curvature, rectification and quadrature, special transcendental curves and surfaces; "Differential Geometry: applications of Differential Equations to Geometry," with the topics curves on surfaces, minimal surfaces, surfaces determined by differential properties, conformal and other representation of surfaces on others, deformation of surfaces, orthogonal and isothermic surfaces.
In it Maclaurin developed several theorems due to Newton, and introduced the method of generating conics which bears his name, and showed that many curves of the third and fourth degrees can be described by the intersection of two movable angles.
We may now summarize the contents of the Conics of Apollonius.
Synonyms:
conical, cone-shaped, conelike,
Antonyms:
angular,