<< अपरिमेय संख्या विवेकहीन विलक्षण विचार >>

तर्कहीन संख्या Meaning in English



तर्कहीन संख्या शब्द का अंग्रेजी अर्थ : irrational number


तर्कहीन-संख्या हिंदी उपयोग और उदाहरण

तर्कहीन संख्या का अस्तित्व ।


पायथागॉरियन प्रमेय के परिणामों में से एक है कि तारतम्यहीन लंबाई (ie. उनके अनुपात तर्कहीन संख्या में है), जैसे की 2 का वर्गमूल, बनाया जा सकता है।


"" तर्कहीन संख्या का अस्तित्व ।


""पायथागॉरियन प्रमेय के परिणामों में से एक है कि तारतम्यहीन लंबाई (ie. उनके अनुपात तर्कहीन संख्या में है), जैसे की 2 का वर्गमूल, बनाया जा सकता है।





तर्कहीन-संख्या इसके अंग्रेजी अर्थ का उदाहरण

Rational numbers have a finite Engel expansion, while irrational numbers have an infinite Engel expansion.


Then we can inquire what the validity of this cue is with regard to the following classes: {rational number, irrational number, even integer}:.


If we know that a number is a positive integer then we know that it is not an irrational number.


Thus, p(c_{irrational}|f_{p\mbox{-}int}) 0\ , the cue validity for is_positive_integer as a cue for the category irrational number is 0.


finitely generated groups, each isomorphic to one of the form Zm \oplusZ n generated by Cn and m independent rotations with an irrational number of turns, and m, n ≥ 1; for each pair (m, n) there are uncountably many isometry groups, all the same as abstract group; for the pair (1, 1) the group is cyclic.


Robert finds himself at the North Pole, where the Number Devil introduces irrational numbers (unreasonable numbers), as well as aspects of Euclidean geometry, such as vertices (dots) and edges (lines).


For instance, exponentiation takes the term hopping, and the fictional term unreasonable numbers was coined for irrational numbers.


He introduced Nöbeling space, the subspace of \mathbf{R}^{2 n + 1} consisting of points with at least n + 1 co-ordinates being irrational numbers, which has universal properties for embedding spaces of dimension n.


the symmetric derivative exists at rational numbers but not at irrational numbers.


The Greeks had discovered irrational numbers, but were not happy with them and only able to cope by drawing a distinction between magnitude and number.


Let \;\alpha \in \mathbb R \smallsetminus \mathbb Q\; be any irrational number and define x_n x_0 + \frac{\alpha}{n} for all n \in \mathbb N.


f is continuous at all irrational numbers, also dense within the real numbers.


* For irrational numbers:.


:For any sequence of irrational numbers (a_n)_{n1}^\infty with a_n \ne x_0 for all n \in \mathbb{N}_{+} that converges to the irrational point x_0,\; the sequence (f(a_n))_{n1}^\infty is identically 0,\; and so \lim_{n \to \infty}\left|\frac{f(a_n)-f(x_0)}{a_n - x_0}\right| 0.





तर्कहीन संख्या Meaning in Other Sites